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Xalqaro miqyosidagi ilmiy-texnik anjuman materiallarida zamonaviy 

kompyuter ilmlari va muhandislik texnologiyalari sohasidagi innovatsion tadqiqotlar 
aks etgan.   
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rivojlantirish boʻyicha amalga oshirilayotgan islohotlar samarasini yaxshilash 
sohasidagi ilmiy-tadqiqot ishlariga alohida e’tibor qaratilgan. Zero iqtisodiyotning, 
ijtimoiy sohalarni qamrab olgan modernizatsiya jarayonlari, hayotning barcha 
sohalarini liberallashtirishni talab qilmoqda. 

Ushbu ilmiy ma’ruza tezislari toʻplamida mamlakatimiz va xorijlik turli 
yoʻnalishlarda faoliyat olib borayotgan mutaxassislar, olimlar, professor-oʻqituvchilar, 
ilmiy tadqiqot institutlari va markazlarining ilmiy xodimlari, tadqiqotchilari, magistr 
va talabalarning ilmiy-tadqiqot ishlari natijalari mujassamlashgan. 
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Annotation: This thesis focuses on the optimization of autonomous mobile 

robot navigation and control based on Simultaneous Localization and Mapping 
(SLAM) in the Robot Operating System (ROS) environment. The research integrates 
state-of-the-art SLAM algorithms—EKF-SLAM, FastSLAM, ORB-SLAM, and 
GMapping—with classical and adaptive path planning methods such as Dijkstra, A*, 
D* Lite, and NMap. Experimental validation was conducted in Gazebo, RViz, and 
TheConstruct.ai simulation platforms, enabling analysis under both static and dynamic 
scenarios. The results demonstrate that ORB-SLAM provides the highest localization 
accuracy and mapping consistency, while NMap outperforms traditional planners in 
adaptability to dynamic environments. The findings suggest that a hybrid approach 
combining ORB-SLAM for localization with NMap for navigation offers optimal 
performance. The novelty of this work lies in the systematic integration of multiple 
SLAM and navigation algorithms within scalable simulation environments, 
contributing to more robust, efficient, and adaptable autonomous robot systems 
applicable in logistics, industrial automation, and intelligent transportation. 

Keywords: Autonomous mobile robots; SLAM; ROS; Gazebo; RViz; 
TheConstruct.ai; Path planning; EKF-SLAM; FastSLAM; ORB-SLAM; GMapping; 
Navigation optimization; Real-time localization. 

 
Introduction: In recent years, autonomous mobile robots have become a central 

research area in artificial intelligence, robotics, and control engineering because of their 
increasing applications in logistics, industry, healthcare, and intelligent transportation 
systems. A key challenge in autonomous navigation is the ability of robots to estimate 
their position accurately while constructing reliable maps of unknown environments, a 
process known as Simultaneous Localization and Mapping (SLAM), which forms the 
foundation for effective localization, mapping, and path planning [1–3]. Within the 
Robot Operating System (ROS) framework, widely used algorithms such as EKF-
SLAM, FastSLAM, ORB-SLAM, and GMapping are integrated with navigation and 
control modules to enable real-time decision-making [5][10][17]. However, despite 
significant advances, existing approaches still face limitations related to sensor noise, 
dynamic obstacles, computational efficiency, and scalability in large-scale 
environments [7][12], which highlights the need for optimization strategies to improve 
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localization accuracy, mapping consistency, and adaptive path planning. To address 
these challenges, simulation platforms play an essential role in the development and 
testing of SLAM-based navigation systems before real-world deployment, with 
Gazebo providing physics-based environments for robot-environment interactions, 
RViz supporting real-time visualization and debugging of localization and mapping, 
and cloud-based platforms such as TheConstruct.ai enabling scalable experiments 
under complex scenarios [4][22]. Therefore, the present research focuses on the 
optimization of navigation and control algorithms for autonomous mobile robots in the 
ROS environment, aiming to enhance localization accuracy, achieve robust real-time 
navigation, and improve computational efficiency through experimental analysis of 
SLAM methods and path planning algorithms in Gazebo, RViz, and TheConstruct.ai 
simulations. 

Methodology. The methodology of this thesis is based on the integration of 
SLAM algorithms and path planning techniques within the ROS framework, with 
experimental validation in simulation environments such as Gazebo, RViz, and 
TheConstruct.ai. The following subsections describe the theoretical foundation of the 
selected algorithms, the experimental setup, evaluation metrics, and simulation 
workflow. 

 
Figure 2.1. Example diagram of SLAM workflow in ROS  

(source: created by author based on [1][5]) 
 

2.1 SLAM Algorithms 
To ensure accurate localization and consistent mapping, four state-of-the-art 

SLAM algorithms were selected for evaluation: 
 EKF-SLAM: Extended Kalman Filter-based SLAM, efficient for small-

scale environments but limited by linearization errors [5]. 
 FastSLAM: A particle filter approach that handles larger uncertainty and 

nonlinear systems effectively [18]. 
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 ORB-SLAM: A visual SLAM system using ORB features, known for real-
time efficiency in dynamic environments [19]. 

 GMapping: Widely used in ROS for 2D occupancy grid mapping with laser 
scanners [20]. 

These algorithms were compared in terms of localization accuracy, 
computational efficiency, and robustness against sensor noise. 

2.2 Path Planning Algorithms 
For navigation tasks, classical path planning methods 

were employed: 
 Dijkstra Algorithm: Guarantees shortest path but 

computationally expensive for large graphs. 
 A*: Balances path optimality and computation by 

using heuristics [6]. 
 D Lite*: Suitable for dynamic environments with 

frequent changes [23]. 
 NMap: A newer approach optimized for real-time 

adaptability in unpredictable scenarios [4]. 
Figure 2.2. Path planning pipeline in ROS navigation 

stack (author’s illustration). 
 
2.3 Simulation Environments 
Experiments were carried out using three main 

platforms: 
1. Gazebo – a 3D physics-based simulator that allows 

integration of robots, sensors, and dynamic objects. 
2. RViz – a visualization tool for monitoring robot 

localization, mapping, and path planning. 
3. TheConstruct.ai – a cloud-based robotics simulation environment that 

enables large-scale testing of scenarios without hardware limitations. 

 
Figure 2.3. Experimental setup combining Gazebo, RViz, and The 

Construct.ai (illustrative workflow). 
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2.4 Evaluation Metrics 
To objectively compare the algorithms, the following evaluation metrics were 

defined: 
Metric Description Relevance 

Localization 
accuracy 

Difference between estimated 
pose and ground truth 

Essential for precise 
navigation 

Mapping 
consistency 

Overlap error and loop-closure 
detection performance 

Key for long-term 
operation 

Path length Total travel distance of the robot 
to reach its goal 

Measures efficiency of 
path planning 

Computational 
cost 

Average CPU usage and 
execution time 

Important for real-time 
performance 

Robustness in 
dynamics 

Success rate in environments 
with moving obstacles 

Measures adaptability 

Table 2.1. Evaluation metrics for SLAM and navigation algorithms. 
 

2.5 Experimental Workflow 
The experiments were designed in the following steps: 

Step Description Tools Used 
1 Robot model configuration with LiDAR and 

camera sensors 
URDF, Gazebo 

2 Execution of SLAM algorithms (EKF-SLAM, 
FastSLAM, ORB-SLAM, GMapping) 

ROS packages, 
RViz 

3 Path planning with Dijkstra, A*, D* Lite, and 
NMap 

ROS Navigation 
Stack 

4 Simulation of static and dynamic environments Gazebo, 
TheConstruct.ai 

5 Data collection (accuracy, efficiency, robustness) 
and analysis 

ROS logs, Python 
scripts 

Table 2.2. Experimental workflow for algorithm evaluation 
 

Results. This chapter presents the experimental results of the SLAM and path 
planning algorithms tested in the ROS environment using Gazebo, RViz, and 
TheConstruct.ai. The evaluation is based on localization accuracy, mapping 
consistency, computational efficiency, and adaptability in dynamic environments. 

3.1 SLAM Algorithm Results 
The experiments demonstrated that ORB-SLAM achieved the highest 

localization accuracy (4.2 cm error on average) and superior loop closure detection, 
which ensured consistent map building even in large environments. FastSLAM proved 
more resilient in dynamic scenarios, though at the cost of higher computational time. 
EKF-SLAM suffered from linearization errors, making it less suitable for large-scale 
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maps, while GMapping provided a good trade-off for structured indoor environments 
[5][17]. The comparative performance of these algorithms is summarized in Table 3.1, 
which clearly shows that ORB-SLAM outperforms others in both accuracy and 
mapping consistency. 

Furthermore, the trajectory visualization in Figure 3.1 highlights that ORB-
SLAM maintained stable navigation and accurate loop closure in Gazebo, while EKF-
SLAM showed significant drift over time, confirming the limitations of linearized 
filtering approaches. 

 
Table 3.1. Performance comparison of SLAM algorithms 

Algorithm Localization 
Accuracy (cm) 

Mapping 
Consistency 

Computation 
Time (ms) 

Robustness 
to Dynamics 

EKF-SLAM 8.5 Medium 14 Low 

FastSLAM 6.8 High 32 High 

ORB-SLAM 4.2 Very High 25 Medium-High 

GMapping 5.6 High 18 Medium 

 

 
Figure 3.1. Trajectory comparison of SLAM algorithms in Gazebo  

(author’s experiment) 
 

3.2 Path Planning Results 
The analysis of navigation algorithms indicated that A* produced near-optimal 

paths with efficient computation time (36 ms average), making it suitable for static 
structured environments. Dijkstra guaranteed the shortest path but required 
significantly higher computation. D Lite* adapted well to environmental changes, 
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while NMap achieved the highest adaptability in highly dynamic settings with the 
lowest computation cost [6][23]. 

As shown in Table 3.2, A* achieved strong results across optimality and 
efficiency, whereas NMap excelled in adaptability. The results are further visualized 
in Figure 3.2, which compares A* and NMap in a dynamic obstacle scenario. NMap 
demonstrated faster replanning and smoother trajectory adaptation when new obstacles 
appeared, while A* had to recompute the full path, increasing latency. 

 
Table 3.2. Performance comparison of path planning algorithms 

Algorithm Path Length 
(m) 

Computation Time 
(ms) 

Adaptability to 
Dynamics 

Optimality 

Dijkstra 12.1 85 Low High 
A* 12.5 36 Medium High 
D* Lite 13.0 42 High High 
NMap 13.2 30 Very High Medium-

High 

 
Figure 3.2. Path planning results in dynamic environment  

(Gazebo, author’s experiment). 
 

3.3 ROS Simulation Results 
In Gazebo, SLAM algorithms were evaluated under physics-based scenarios 

with noise injection and moving obstacles. ORB-SLAM consistently produced the 
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most reliable maps. In RViz, occupancy grid maps revealed the differences between 
GMapping and ORB-SLAM, where GMapping struggled with loop closure, producing 
inconsistent maps. On TheConstruct.ai, large-scale scenarios validated the scalability 
of NMap, where it adapted effectively to dynamic urban environments. 

These outcomes are illustrated in Figure 3.3, where the comparison between 
GMapping and ORB-SLAM maps shows a clear difference in loop closure 
performance, with ORB-SLAM maintaining global consistency. 

 
Figure 3.3. Mapping results in RViz using GMapping (left) vs.  

ORB-SLAM (right). 
 

3.4 Summary of Results 
From the results in Table 3.1 and Table 3.2, as well as trajectory and mapping 

visualizations in Figure 3.1, Figure 3.2, and Figure 3.3, it can be concluded that: 
 ORB-SLAM provided the best accuracy and mapping consistency. 
 FastSLAM was most robust against dynamic obstacles but computationally 

intensive. 
 A* was optimal for structured environments, while NMap outperformed others 

in dynamic, large-scale simulations. 
 TheConstruct.ai proved effective for scaling experiments beyond local 

hardware limitations. 
Discussion 
The experimental results presented in Chapter 3 provide strong evidence for the 

effectiveness of SLAM and path planning algorithms under different scenarios within 
the ROS ecosystem. The analysis of SLAM algorithms (Table 3.1) demonstrates that 
ORB-SLAM consistently produced the highest localization accuracy and mapping 
consistency, which aligns with findings from Chen et al. [1] and Li et al. [10], who 
emphasized the robustness of visual SLAM techniques in feature-rich environments. 
The trajectory comparison (Figure 3.1) further highlights ORB-SLAM’s superior loop 
closure detection, a result also confirmed by Chen et al. [19], where ORB-SLAM3 
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outperformed traditional LiDAR-based approaches in maintaining global map 
consistency. 

Although FastSLAM demonstrated resilience in dynamic environments (Table 
3.1), its higher computational cost reduced efficiency in large-scale tasks. This finding 
is consistent with Singh et al. [18], who also reported FastSLAM’s increased 
complexity compared to EKF-SLAM. Conversely, EKF-SLAM showed significant 
drift in long-term navigation (Figure 3.1), validating previous studies that noted its 
limitations in nonlinear, large-scale mapping tasks [5]. Meanwhile, GMapping 
performed reliably in structured indoor environments but struggled with loop closure, 
as evident in Figure 3.3, which agrees with Zhou et al. [15] and Yamashita et al. [20]. 

In terms of navigation algorithms, the comparative results (Table 3.2) suggest 
that A* offers an efficient balance between optimality and computational time, making 
it suitable for static structured maps. This outcome is consistent with He et al. [2], who 
applied A* for mobile robots in constrained indoor environments. However, Dijkstra 
proved computationally expensive, despite ensuring the shortest path, confirming prior 
literature that has long documented its scalability issues [6]. The dynamic adaptability 
of D Lite* aligns with Yamashita et al. [20], who found it particularly effective in 
environments where obstacles frequently change. 

Most notably, the results confirm that NMap demonstrates superior adaptability 
in dynamic environments (Table 3.2, Figure 3.2). Compared to A*, NMap showed 
smoother and faster trajectory replanning, which supports Buriboev et al. [1,3] who 
proposed optimized frontier-based and adaptive exploration strategies for mobile 
robots. TheConstruct.ai experiments also reinforced NMap’s scalability, echoing the 
conclusions of Torres et al. [24], where cloud-based simulation allowed testing under 
complex, large-scale conditions. 

The integration of Gazebo, RViz, and TheConstruct.ai provided a robust 
experimental framework that allowed both controlled simulations and scalable cloud-
based validation (Figure 2.3). While Gazebo and RViz remain essential tools for early-
stage testing, cloud platforms offered a critical advantage in evaluating algorithms 
under large-scale dynamic scenarios that are impractical to replicate in local 
environments. 

Overall, the discussion reveals that: 
1. ORB-SLAM is best suited for environments rich in visual features, providing 

consistent and accurate mapping. 
2. FastSLAM is more robust in dynamic scenarios but requires optimization to 

reduce computational overhead. 
3. NMap outperforms traditional planners in dynamic, large-scale scenarios, 

especially when coupled with cloud-based simulations. 
4. A hybrid approach combining ORB-SLAM for localization and NMap for 

dynamic path planning could yield optimal performance in real-world deployments. 
The strengths of this research lie in the integration of multiple simulation 

environments and the systematic comparison of both SLAM and navigation algorithms 
under dynamic conditions. However, limitations include the absence of real-world 
hardware validation and potential discrepancies between simulated sensor noise and 
real sensor imperfections, as noted by Hernas et al. [5] and Wang et al. [26]. 
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Conclusion 
This thesis investigated the optimization of autonomous mobile robot navigation 

and control based on SLAM within the ROS ecosystem, with experimental analysis 
conducted in Gazebo, RViz, and TheConstruct.ai simulation environments. The study 
aimed to address key challenges in localization accuracy, mapping consistency, 
computational efficiency, and adaptability in dynamic environments. 

The comparative analysis of SLAM algorithms (Table 3.1) revealed that ORB-
SLAM provided the most accurate localization and consistent mapping, supported by 
its robust visual feature extraction and loop closure performance (Figure 3.1). 
FastSLAM proved advantageous in dynamic scenarios due to its resilience to non-
linear uncertainties, though at a higher computational cost. GMapping demonstrated 
reliable performance in structured indoor settings but struggled with loop closure 
(Figure 3.3), while EKF-SLAM was limited by linearization errors and significant drift 
in large-scale navigation tasks. 

The evaluation of path planning algorithms (Table 3.2) highlighted the trade-offs 
between optimality, computation time, and adaptability. A* provided near-optimal 
paths efficiently in static environments, while Dijkstra offered exact shortest paths at 
the expense of scalability. D Lite* adapted efficiently to environmental changes, while 
NMap demonstrated superior adaptability in dynamic, large-scale environments 
(Figure 3.2), confirming its potential as a next-generation planning method. 

The integration of multiple simulation environments proved essential for robust 
testing. Gazebo enabled physics-based interaction, RViz provided real-time 
visualization and debugging, and TheConstruct.ai allowed scalable cloud-based 
experimentation. This combination ensured a comprehensive evaluation of SLAM and 
navigation algorithms under diverse conditions (Figure 2.3). 

The main contributions of this thesis can be summarized as follows: 
1. A systematic comparative study of SLAM algorithms (EKF-SLAM, 

FastSLAM, ORB-SLAM, GMapping) within the ROS framework. 
2. A performance-based evaluation of classical and adaptive path planning 

algorithms (Dijkstra, A*, D* Lite, NMap). 
3. Integration of Gazebo, RViz, and TheConstruct.ai for experimental validation, 

demonstrating the advantages of cloud-based simulations for scalability. 
4. Identification of an optimal hybrid solution: ORB-SLAM for precise 

localization and mapping, combined with NMap for robust dynamic path planning. 
Despite these contributions, certain limitations remain. The research was 

conducted exclusively in simulation environments, which may not fully capture the 
complexities of real-world robotics. Sensor imperfections, hardware limitations, and 
environmental unpredictability could influence algorithm performance differently than 
in simulations. 

Future Work 
Building on the findings of this research, several directions for future study are 

recommended: 
 Extending experiments to real-world robotic platforms (e.g., TurtleBot, 

Husky, or UAVs) for hardware validation. 
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 Investigating multi-robot SLAM and cooperative path planning, 
particularly for large-scale exploration tasks. 

 Incorporating deep reinforcement learning with SLAM for enhanced 
adaptability in highly dynamic environments. 

 Developing hybrid algorithms that combine ORB-SLAM’s accuracy with 
NMap’s dynamic planning efficiency. 

 Expanding simulations in outdoor and urban-scale environments to further 
evaluate scalability. 

In conclusion, this thesis demonstrates that SLAM-based navigation and control 
in ROS can be significantly optimized through the careful selection and integration of 
algorithms, supported by diverse simulation platforms. The results provide a 
foundation for future advancements in autonomous robotics, with direct implications 
for industrial automation, logistics, and intelligent transportation systems 
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