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Annotation: This thesis focuses on the optimization of autonomous mobile
robot navigation and control based on Simultaneous Localization and Mapping
(SLAM) in the Robot Operating System (ROS) environment. The research integrates
state-of-the-art SLAM algorithms—EKF-SLAM, FastSLAM, ORB-SLAM, and
GMapping—with classical and adaptive path planning methods such as Dijkstra, A*,
D* Lite, and NMap. Experimental validation was conducted in Gazebo, RViz, and
TheConstruct.ai simulation platforms, enabling analysis under both static and dynamic
scenarios. The results demonstrate that ORB-SLAM provides the highest localization
accuracy and mapping consistency, while NMap outperforms traditional planners in
adaptability to dynamic environments. The findings suggest that a hybrid approach
combining ORB-SLAM for localization with NMap for navigation offers optimal
performance. The novelty of this work lies in the systematic integration of multiple
SLAM and navigation algorithms within scalable simulation environments,
contributing to more robust, efficient, and adaptable autonomous robot systems
applicable in logistics, industrial automation, and intelligent transportation.

Keywords: Autonomous mobile robots; SLAM; ROS; Gazebo; RViz;
TheConstruct.ai; Path planning; EKF-SLAM; FastSLAM; ORB-SLAM; GMapping;
Navigation optimization; Real-time localization.

Introduction: In recent years, autonomous mobile robots have become a central
research area in artificial intelligence, robotics, and control engineering because of their
increasing applications in logistics, industry, healthcare, and intelligent transportation
systems. A key challenge in autonomous navigation is the ability of robots to estimate
their position accurately while constructing reliable maps of unknown environments, a
process known as Simultaneous Localization and Mapping (SLAM), which forms the
foundation for effective localization, mapping, and path planning [1-3]. Within the
Robot Operating System (ROS) framework, widely used algorithms such as EKF-
SLAM, FastSLAM, ORB-SLAM, and GMapping are integrated with navigation and
control modules to enable real-time decision-making [5][10][17]. However, despite
significant advances, existing approaches still face limitations related to sensor noise,
dynamic obstacles, computational efficiency, and scalability in large-scale

environments [7][12], which highlights the need for optimization strategies to improve
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localization accuracy, mapping consistency, and adaptive path planning. To address
these challenges, simulation platforms play an essential role in the development and
testing of SLAM-based navigation systems before real-world deployment, with
Gazebo providing physics-based environments for robot-environment interactions,
RViz supporting real-time visualization and debugging of localization and mapping,
and cloud-based platforms such as TheConstruct.ai enabling scalable experiments
under complex scenarios [4][22]. Therefore, the present research focuses on the
optimization of navigation and control algorithms for autonomous mobile robots in the
ROS environment, aiming to enhance localization accuracy, achieve robust real-time
navigation, and improve computational efficiency through experimental analysis of
SLAM methods and path planning algorithms in Gazebo, RViz, and TheConstruct.ai
simulations.

Methodology. The methodology of this thesis is based on the integration of
SLAM algorithms and path planning techniques within the ROS framework, with
experimental validation in simulation environments such as Gazebo, RViz, and
TheConstruct.ai. The following subsections describe the theoretical foundation of the
selected algorithms, the experimental setup, evaluation metrics, and simulation
workflow.
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Figure 2.1. Example diagram of SLAM workflow in ROS
(source: created by author based on [1][5])

2.1 SLAM Algorithms

To ensure accurate localization and consistent mapping, four state-of-the-art
SLAM algorithms were selected for evaluation:

e EKF-SLAM: Extended Kalman Filter-based SLAM, efficient for small-
scale environments but limited by linearization errors [5].

o FastSLAM: A particle filter approach that handles larger uncertainty and
nonlinear systems effectively [18].
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e ORB-SLAM: A visual SLAM system using ORB features, known for real-
time efficiency in dynamic environments [19].

e  GMapping: Widely used in ROS for 2D occupancy grid mapping with laser
scanners [20].

These algorithms were compared in terms of localization accuracy,

computational efficiency, and robustness against sensor noise.
2.2 Path Planning Algorithms

For navigation tasks, classical path planning methods Start
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1. Gazebo — a 3D physics-based simulator that allows
integration of robots, sensors, and dynamic objects.
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enables large-scale testing of scenarios without hardware limitations.
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Figure 2.3. Experimental setup combining Gazebo, RViz, and The
Construct.ai (illustrative workflow).
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2.4 Evaluation Metrics

To objectively compare the algorithms, the following evaluation metrics were
defined:

Metric Description Relevance
Localization Difference between estimated Essential for precise
accuracy pose and ground truth navigation
Mapping Overlap error and loop-closure ~ Key for long-term
consistency detection performance operation
Path length Total travel distance of the robot Measures efficiency of

to reach its goal path planning
Computational Average CPU usage and Important for real-time
cost execution time performance
Robustness in Success rate in environments Measures adaptability
dynamics with moving obstacles

Table 2.1. Evaluation metrics for SLAM and navigation algorithms.

2.5 Experimental Workflow
The experiments were designed in the following steps:

Step Description Tools Used

1 Robot model configuration with LiDAR and URDF, Gazebo
camera sensors

2 Execution of SLAM algorithms (EKF-SLAM, ROS packages,
FastSLAM, ORB-SLAM, GMapping) RViz

3 Path planning with Dijkstra, A*, D* Lite, and ROS Navigation
NMap Stack

4 Simulation of static and dynamic environments Gazebo,

TheConstruct.ai

5 Data collection (accuracy, efficiency, robustness)  ROS logs, Python
and analysis scripts

Table 2.2. Experimental workflow for algorithm evaluation

Results. This chapter presents the experimental results of the SLAM and path
planning algorithms tested in the ROS environment using Gazebo, RViz, and
TheConstruct.ai. The evaluation is based on localization accuracy, mapping
consistency, computational efficiency, and adaptability in dynamic environments.

3.1 SLAM Algorithm Results

The experiments demonstrated that ORB-SLAM achieved the highest
localization accuracy (4.2 cm error on average) and superior loop closure detection,
which ensured consistent map building even in large environments. FastSLAM proved
more resilient in dynamic scenarios, though at the cost of higher computational time.
EKF-SLAM suffered from linearization errors, making it less suitable for large-scale
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maps, while GMapping provided a good trade-off for structured indoor environments
[5][17]. The comparative performance of these algorithms is summarized in Table 3.1,
which clearly shows that ORB-SLAM outperforms others in both accuracy and
mapping consistency.

Furthermore, the trajectory visualization in Figure 3.1 highlights that ORB-
SLAM maintained stable navigation and accurate loop closure in Gazebo, while EKF-
SLAM showed significant drift over time, confirming the limitations of linearized
filtering approaches.

Table 3.1. Performance comparison of SLAM algorithms

Algorithm Localization Mapping Computation | Robustness

Accuracy (cm) | Consistency Time (ms) to Dynamics
EKF-SLAM | 8.5 Medium 14 Low
FastSLAM | 6.8 High 32 High
ORB-SLAM (4.2 Very High 25 Medium-High
GMapping 5.6 High 18 Medium

—— EKF-SLAM

FastSLAM — —
—— ORB-SLAM W |
—— GMapping

-4 0 2 4 6 8
x (m)
Figure 3.1. Trajectory comparison of SLAM algorithms in Gazebo
(author’s experiment)

3.2 Path Planning Results

The analysis of navigation algorithms indicated that A* produced near-optimal
paths with efficient computation time (36 ms average), making it suitable for static
structured environments. Dijkstra guaranteed the shortest path but required
significantly higher computation. D Lite* adapted well to environmental changes,
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while NMap achieved the highest adaptability in highly dynamic settings with the
lowest computation cost [6][23].

As shown in Table 3.2, A* achieved strong results across optimality and
efficiency, whereas NMap excelled in adaptability. The results are further visualized
in Figure 3.2, which compares A* and NMap in a dynamic obstacle scenario. NMap
demonstrated faster replanning and smoother trajectory adaptation when new obstacles
appeared, while A* had to recompute the full path, increasing latency.

Table 3.2. Performance comparison of path planning algorithms
Algorithm Path Length Computation Time Adaptability to Optimality

(m) (ms) Dynamics
Dijkstra 12.1 85 Low High
A* 12.5 36 Medium High
D* Lite 13.0 42 High High
NMap 13.2 30 Very High Medium-

High
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Figure 3.2. Path planning results in dynamic environment
(Gazebo, author’s experiment).

3.3 ROS Simulation Results
In Gazebo, SLAM algorithms were evaluated under physics-based scenarios
with noise injection and moving obstacles. ORB-SLAM consistently produced the
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most reliable maps. In RViz, occupancy grid maps revealed the differences between
GMapping and ORB-SLAM, where GMapping struggled with loop closure, producing
inconsistent maps. On TheConstruct.ai, large-scale scenarios validated the scalability
of NMap, where it adapted effectively to dynamic urban environments.

These outcomes are illustrated in Figure 3.3, where the comparison between
GMapping and ORB-SLAM maps shows a clear difference in loop closure
performance, with ORB-SLAM maintaining global consistency.

Figure 3.3. Mapping results in RViz using GMapping (left) vs.
ORB-SLAM (right).

3.4 Summary of Results

From the results in Table 3.1 and Table 3.2, as well as trajectory and mapping
visualizations in Figure 3.1, Figure 3.2, and Figure 3.3, it can be concluded that:

« ORB-SLAM provided the best accuracy and mapping consistency.

« FastSLAM was most robust against dynamic obstacles but computationally
intensive.

« A* was optimal for structured environments, while NMap outperformed others
in dynamic, large-scale simulations.

« TheConstruct.ai proved effective for scaling experiments beyond local
hardware limitations.

Discussion

The experimental results presented in Chapter 3 provide strong evidence for the
effectiveness of SLAM and path planning algorithms under different scenarios within
the ROS ecosystem. The analysis of SLAM algorithms (Table 3.1) demonstrates that
ORB-SLAM consistently produced the highest localization accuracy and mapping
consistency, which aligns with findings from Chen et al. [1] and Li et al. [10], who
emphasized the robustness of visual SLAM techniques in feature-rich environments.
The trajectory comparison (Figure 3.1) further highlights ORB-SLAM’s superior loop
closure detection, a result also confirmed by Chen et al. [19], where ORB-SLAM3
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outperformed traditional LiDAR-based approaches in maintaining global map
consistency.

Although FastSLAM demonstrated resilience in dynamic environments (Table
3.1), its higher computational cost reduced efficiency in large-scale tasks. This finding
is consistent with Singh et al. [18], who also reported FastSLAM’s increased
complexity compared to EKF-SLAM. Conversely, EKF-SLAM showed significant
drift in long-term navigation (Figure 3.1), validating previous studies that noted its
limitations in nonlinear, large-scale mapping tasks [5]. Meanwhile, GMapping
performed reliably in structured indoor environments but struggled with loop closure,
as evident in Figure 3.3, which agrees with Zhou et al. [15] and Yamashita et al. [20].

In terms of navigation algorithms, the comparative results (Table 3.2) suggest
that A* offers an efficient balance between optimality and computational time, making
it suitable for static structured maps. This outcome is consistent with He et al. [2], who
applied A* for mobile robots in constrained indoor environments. However, Dijkstra
proved computationally expensive, despite ensuring the shortest path, confirming prior
literature that has long documented its scalability issues [6]. The dynamic adaptability
of D Lite* aligns with Yamashita et al. [20], who found it particularly effective in
environments where obstacles frequently change.

Most notably, the results confirm that NMap demonstrates superior adaptability
in dynamic environments (Table 3.2, Figure 3.2). Compared to A*, NMap showed
smoother and faster trajectory replanning, which supports Buriboev et al. [1,3] who
proposed optimized frontier-based and adaptive exploration strategies for mobile
robots. TheConstruct.ai experiments also reinforced NMap’s scalability, echoing the
conclusions of Torres et al. [24], where cloud-based simulation allowed testing under
complex, large-scale conditions.

The integration of Gazebo, RViz, and TheConstruct.ai provided a robust
experimental framework that allowed both controlled simulations and scalable cloud-
based validation (Figure 2.3). While Gazebo and RViz remain essential tools for early-
stage testing, cloud platforms offered a critical advantage in evaluating algorithms
under large-scale dynamic scenarios that are impractical to replicate in local
environments.

Overall, the discussion reveals that:

1. ORB-SLAM is best suited for environments rich in visual features, providing
consistent and accurate mapping.

2. FastSLAM is more robust in dynamic scenarios but requires optimization to
reduce computational overhead.

3. NMap outperforms traditional planners in dynamic, large-scale scenarios,
especially when coupled with cloud-based simulations.

4. A hybrid approach combining ORB-SLAM for localization and NMap for
dynamic path planning could yield optimal performance in real-world deployments.

The strengths of this research lie in the integration of multiple simulation
environments and the systematic comparison of both SLAM and navigation algorithms
under dynamic conditions. However, limitations include the absence of real-world
hardware validation and potential discrepancies between simulated sensor noise and

real sensor imperfections, as noted by Hernas et al. [5] and Wang et al. [26].
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Conclusion

This thesis investigated the optimization of autonomous mobile robot navigation
and control based on SLAM within the ROS ecosystem, with experimental analysis
conducted in Gazebo, RViz, and TheConstruct.ai simulation environments. The study
aimed to address key challenges in localization accuracy, mapping consistency,
computational efficiency, and adaptability in dynamic environments.

The comparative analysis of SLAM algorithms (Table 3.1) revealed that ORB-
SLAM provided the most accurate localization and consistent mapping, supported by
its robust visual feature extraction and loop closure performance (Figure 3.1).
FastSLAM proved advantageous in dynamic scenarios due to its resilience to non-
linear uncertainties, though at a higher computational cost. GMapping demonstrated
reliable performance in structured indoor settings but struggled with loop closure
(Figure 3.3), while EKF-SLAM was limited by linearization errors and significant drift
in large-scale navigation tasks.

The evaluation of path planning algorithms (Table 3.2) highlighted the trade-offs
between optimality, computation time, and adaptability. A* provided near-optimal
paths efficiently in static environments, while Dijkstra offered exact shortest paths at
the expense of scalability. D Lite* adapted efficiently to environmental changes, while
NMap demonstrated superior adaptability in dynamic, large-scale environments
(Figure 3.2), confirming its potential as a next-generation planning method.

The integration of multiple simulation environments proved essential for robust
testing. Gazebo enabled physics-based interaction, RViz provided real-time
visualization and debugging, and TheConstruct.ai allowed scalable cloud-based
experimentation. This combination ensured a comprehensive evaluation of SLAM and
navigation algorithms under diverse conditions (Figure 2.3).

The main contributions of this thesis can be summarized as follows:

1. A systematic comparative study of SLAM algorithms (EKF-SLAM,
FastSLAM, ORB-SLAM, GMapping) within the ROS framework.

2. A performance-based evaluation of classical and adaptive path planning
algorithms (Dijkstra, A*, D* Lite, NMap).

3. Integration of Gazebo, RViz, and TheConstruct.ai for experimental validation,
demonstrating the advantages of cloud-based simulations for scalability.

4. Identification of an optimal hybrid solution: ORB-SLAM for precise
localization and mapping, combined with NMap for robust dynamic path planning.

Despite these contributions, certain limitations remain. The research was
conducted exclusively in simulation environments, which may not fully capture the
complexities of real-world robotics. Sensor imperfections, hardware limitations, and
environmental unpredictability could influence algorithm performance differently than
in simulations.

Future Work

Building on the findings of this research, several directions for future study are
recommended:

« Extending experiments to real-world robotic platforms (e.g., TurtleBot,
Husky, or UAVs) for hardware validation.
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o Investigating multi-robot SLAM and cooperative path planning,
particularly for large-scale exploration tasks.

o Incorporating deep reinforcement learning with SLAM for enhanced
adaptability in highly dynamic environments.

« Developing hybrid algorithms that combine ORB-SLAM’s accuracy with
NMap’s dynamic planning efficiency.

« Expanding simulations in outdoor and urban-scale environments to further
evaluate scalability.

In conclusion, this thesis demonstrates that SLAM-based navigation and control
in ROS can be significantly optimized through the careful selection and integration of
algorithms, supported by diverse simulation platforms. The results provide a
foundation for future advancements in autonomous robotics, with direct implications
for industrial automation, logistics, and intelligent transportation systems

The author expresses sincere gratitude to the National University of
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the research. Special thanks are extended to the Department of Computer Science
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